Dialogic ADPCM Algorithm

Abstract

This application note describes the implementation of Adaptive Differential Pulse Code
Modulation (ADPCM) as used in Dialogic Voice Processing Applications.

The following topics are covered.

» File format for voice data files.

« ADPCM encoding algorithm.

e ADPCM decoding algorithm.

e Step size determination.

» Initial and reset conditions.

Copyright[D 1988, Dialogic Corporation
All Rights Reserved.
00-1366-001



All names, products, and services mentioned herein are the trademarks or registered trademarks of their respective
organizations and are the sole property of their respective owners. DIALOGIC (including the Dialogic logo), DTI/124,
SpringBoard, and Signal Computing System Architecture (SCSA) are registered trademarks of Dialogic Corporation.
A detailed trademark listing can be found at http://www.dialogic.com/legal.htm.

Warranty Disclaimer

Dialogic expressly disclaims all warranties with regard to this application note, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. Dialogic does not warrant, guarantee, or
make any representation regarding the use or the results of the use of this application note in terms of correctness,
accuracy, or reliability. The contents of this application note are subject to change without notice. Dialogic will
publish updates and revisions of this document as needed. This document supersedes all previous versions.

Limitation of Liability

You agree that Dialogic shall not be liable to you under this agreement for any damages, including without limitation
any lost profits or lost savings, or any consequential, incidental, or punitive damages arising out of the use or inability
to use this application note and related documents, or for any claim by another party. You agree to hold Dialogic
harmless for all claims and damages arising from any third party as a result of their use or inability to use any product
that you develop based on this application note and the products and/or services documented herein.



VOX file format specification:

VOX files are flat binary files containing digitized voice data samples. Each byte contains two
samples. There is a direct relationship between any positional offset within the file and time,
expressed in the following formula:

T() = 2i * I/SR

where: T(i) is the time offset in seconds from the beginning of the file of byte number "i" within
the file. SR is the sampling rate in samples per second.

The encoding within each byte is as follows:
Bit 7 6 5 4 3 2 1 0

Sample N Sample N+1

The encoding within each sample is Adaptive Differential Pulse Code Modulation (ADPCM).
This is a differential coding scheme in which each sample approximates the difference between
the present input value and the previous one. The weighting of the magnitude portion of the
difference is adaptive (non-linear). That is, it can change after each sample.

Bit 3 2 1 0

Sign Magnitude

Sign: Positive (0) or negative (1) sample.

Magnitude: Change (0 to 7) from previous sample.

ADPCM Encoding

Figure 1shows a block diagram of the ADPCM encoding process. A linear input sample X(n) is
compared to the previous estimate of that input X(n-I). The difference, d(n), along with the

present step size, ss(n), are presented to the encoder logic. This logic, described below, produces
an ADPCM output sample. This output sample is also used to update the step size calculation
ss(n+l), and is presented to the decoder to compute the linear estimate of the input sample.



Step Size

. —
Calculation
adjusted step size ss(n+1) i
Z-l
step size ss(n) i
X(n) Li input | * d(n) L(n) ADPCM output [
n) Linear input sample n n output sample
12 bits Gifference ™| ENcoder ® 4 bits >
A
A 4
Decoder
X(n)i
X(n-1) estimate of 7-1

last input sample

Figure 1

The encoder accepts the differential value, d(n), from the comparator and the step size, and
calculates a 4-bit ADPCM code. The following is a representation of this calculation in
pseudocode.

letB3=B2=B1=B0=0
if (d(n) <0)
thenB3 =1
d(n) = ABS(d(n))
if (d(n) >= ss(n))
then B2 = 1 and d(n) = d(n) - ss(n)
if (d(n) >=ss(n)/2)
then B1 =1 and d(n) =d(n) - ss(n) / 2
if (d(n) >=ss(n) / 4)
thenBO =1
L(n) = (10002 * B3) + (1002 * B2) + (102 * B1) + BO

Note: For the calculation of ss(n), see "Calculation of Step Size."



ADPCM Decoding

Figure 2shows a block diagram of the ADPCM decoding process. An ADPCM sample is
presented to the decoder. The decoder computes the difference between the previous linear
output estimate and the anticipated one. This difference is added to the previous estimate to
produce the linear output estimate. The input ADPCM sample is also presented to the step size
calculator to compute the step size estimate.

Step Size

4> i
Calculation

adjusted step size
ss(n+1)

Y Y

z1t zt

step size ss(n)

4

L(n) ADPCAMb|i?Sput sample Py » Decoder Py X(n) Linear output sample>

12 hits

Figure 2

The decoder accepts ADPCM code values, L(n), and step size values. It calculates a reproduced
differential value, and accumulates an estimated waveform value, X. Here is a pseudocode
algorithm:

d(n) = (ss(n)*B2)+(ss(n)/2*B1)+(ss(n)/4*BO)+(ss(n)/8)
if(B3=1

| (then d()n) =d(n) * (-1)

X(n) = X(n-1) + d(n)

Note: For the calculation of ss(n), see "Calculation of Step Size."



Calculation of Step Size

For both the encoding and decoding process, the ADPCM algorithm adjusts the quantizer step
size based on the most recent ADPCM value. The step size for the next sample, n+l, is calculated
with the following equation:

ss(n+1) = ss(n) * 1.1M(L(n))

This equation can be implemented efficiently as a two-stage lookup table. First the magnitude of
the ADPCM code is used as an index to look up an adjustment factor as si@biteid Then

that adjustment factor is used to move an index poinfEalire 2 The index pointer then points

to the new step size. Values greater than 3 will increase the step size. Values less than 4 decrease
the step size.

Table 1. M(L(n)) Values

L(n) Value M(L(n))
1111 or 0111 +8
1110 0110 +6
1101 0101 +4
1100 0100 +2
1011 0011 -1
1010 0010 -1
1001 0001 -1
1000 0000 -1

Table 2. Calculated Step Sizes

No. Step Size No. Step Size No. Step Size No. Step Size
1 16 13 50 25 157 37 494
2 17 14 55 26 173 38 544
3 19 15 60 27 190 39 598
4 21 16 66 28 209 40 658
5 23 17 73 29 230 41 724
6 25 18 80 30 253 42 796
7 28 19 88 31 279 43 876
8 31 20 97 32 307 44 963
9 34 21 107 33 337 45 1060
10 37 22 118 34 371 46 1166
11 41 23 130 35 408 a7 1282
12 45 24 143 36 449 48 1411
49 1552

This method of adapting the scale factor with changes in the waveform is optimized for voice
signals, not square waves or other non-sinusoidal waveforms.



Initial Conditions

When the ADPCM algorithm is reset, the step size ss(n) is set to the minimum value (16) and the
estimated waveform value X is set to zero (half scale). Playback of 48 samples (24 bytes) of plus
and minus zero (109Gand 0009) will reset the algorithm. Twenty-four bytes of 08 Hex or 80

Hex will satisfy this requirement. It is necessary to alternate positive and negative zero values
because the encoding formula always adds 1/8 of the quantization size. If all values were positive
or negative, a DC component would be added that would create a false reference level.



